Preparation of poly(lactic acid) based biocomposites with poly(ethylene glycol) and montmorillonite clay by solvent casting method

Author :  

Year-Number: 2021-1
Yayımlanma Tarihi: 2021-07-08 10:29:53.0
Language : İngilizce
Konu : Polimer Malzeme Mühendisliği
Number of pages: 33-40
Mendeley EndNote Alıntı Yap

Abstract

Keywords

Abstract

Poly(lactic acid) (PLA) is the most commonly used currently among bioplastics in the market. PLA is derived from lactic acid monomer which is produced by fermentation using microorganisms. It is renewable, biodegradable, biocompatible, and low-cost aliphatic thermoplastic bioplastic. However, it displays low barrier properties to use packaging applications compared with conventional polymers. PLA has brittle, low toughness and low thermal resistance properties. To improve the poor properties of PLA, lactic acid polymerizes with other monomers to synthesize copolymers or preparing a PLA blend with other synthetic and biodegradable polymers. PLA has been used as mulching films, biomedical devices, packaging, and membrane materials. In this study, PLA films were prepared by solution casting method using a high shear mixer for 90 sec. PLA films were blended with different concentrations of poly(ethylene glycol) (PEG) and Montmorillonite (MMT). Properties of mechanical, thermal, and optic of biodegradable films were determined using mechanical testing machine Zwick Z 1.0 kN, thermogravimetric analysis, differential scanning calorimetry (DSC), and optical microscopy, respectively. 

Keywords


  • [1] Holmberg AL, Reno KH, Wool RP, Epps TH (2015). Biobased building blocks for the rational design of

  • [1] Holmberg AL, Reno KH, Wool RP, Epps TH (2015). Biobased building blocks for the rational design of renewable block polymers. Soft Matter, 00:1–20. https://doi.org/10.1039/c4sm01220h

  • [2] Ashter SA (2016) Introduction to Bioplastics Engineering. William Andrew Publishing, Norwich NY

  • [3] Ray SS (2012) Polylactide-based bionanocomposites: A promising class of hybrid materials. Acc Chem Res 45(10):1710–1720. https://doi.org/10.1021/ar3000376

  • [4] Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092

  • [5] Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromolecular Bioscience 4(9):835–864. https://doi.org/10.1002/mabi.200400043

  • [6] Lasprilla AJR, Martinez AGR, Lunelli BH, Figueroa JEJ, Jardini AL, Filho RM (2010) Synthesis andCharacterization of Poly (Lactic Acid) for Use in Biomedical Field. Chem Eng Trans 24:85–990. https://doi.org/10.3303/CET1124165

  • [7] Xiong Z, Lin H, Liu F, Yu X, Wang Y, Wang Y (2016). A new strategy to simultaneously improve thepermeability, heat-deformation resistance and antifouling properties of polylactide membrane via bio-based ??-cyclodextrin and surface crosslinking. Journal of Membrane Science 513:166–176. https://doi.org/10.1016/j.memsci.2016.04.036

  • [8] Abd Alsaheb RA et al. (2015) Recent applications of polylactic acid in pharmaceutical and medical industries. J Chem Pharm Res 7(12):51–63

  • [9] Pawar RP, Tekale SU, Shisodia SU, Totre JT, Domb AJ (2014) Biomedical Applications of Poly ( Lactic Acid ). https://doi.org/10.2174/2210296504666140402235024

  • [10] Sim KJ, Han SO, Seo YB (2010) Dynamic mechanical and thermal properties of red algae fiber reinforced poly(lactic acid) biocomposites. Macromol Res 18(5):489–495. https://doi.org/10.1007/s13233-010-0503-3

  • [11] Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2008) How to improve mechanical propertiesof polylactic acid with bamboo fibers. J Mater Sci 43(2):775–787. https://doi.org/10.1007/s10853-007-1994-y

  • [12] Matta AK, Rao RU, Suman KNS, Rambabu V (2014) Preparation and Characterization of BiodegradablePLA/PCL Polymeric Blends. Procedia Mater Sci 6:1266–1270. https://doi.org/10.1016/j.mspro.2014.07.201

  • [13] Shuttleworth PS, Díez-Pascual AM, Marco C, Ellis G (2017) Flexible Bionanocomposites fromEpoxidized Hemp Seed Oil Thermosetting Resin Reinforced with Halloysite Nanotubes. J Phys Chem B 121(11):2454–2467. https://doi.org/10.1021/acs.jpcb.7b00103

  • [14] Miteluț AC, Tănase E, Popa VI, Popa ME (2015) Sustainable Alternative for Food Packaging: Chitosan Biopolymer-a Review 4(2):52-61

  • [15] Erpek CEY, Ozkoc G, Yilmazer U (2015) Comparison of Natural Halloysite with Synthetic Carbon Nanotubes in Poly(lactic acid) Based Composites. Polym Compos. https://doi.org/10.1002/pc.23816

  • [16] Wu TM, Wu CY (2006) Biodegradable poly(lactic acid)/chitosan-modified montmorillonitenanocomposites: Preparation and characterization. Polym Degrad Stab 91(9):2198–2204. https://doi.org/10.1016/j.polymdegradstab.2006.01.004

  • [17] Sébastien F, Stéphane G, Copinet A, Coma V (2006) Novel biodegradable films made from chitosan andpoly(lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydr Polym 65(2):185–193. https://doi.org/10.1016/j.carbpol.2006.01.006

  • [18] Labrecque LV, Kumar R, Dave V, Gross R, McCarthy SP (1997) Citrate esters as plasticizers forpoly(lactic acid). J Appl Polym Sci 66(8):1507–1513. https://doi.org/10.1002/(sici)1097-4628(19971121)66:8<1507::aid-app11>3.0.co;2-0

  • [19] Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol. https://doi.org/10.1016/S0266-3538(03)00103-9

  • [20] Grande R, Pessan LA, Carvalho AJF (2015) Ternary melt blends of poly(lactic acid)/poly(vinyl alcohol)- chitosan. Ind Crops Prod 72:159–165. https://doi.org/10.1016/j.indcrop.2014.12.041

  • [21] Huneault MA, Li H (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer (Guildf) 48(1):270–280. https://doi.org/10.1016/j.polymer.2006.11.023

  • [22] Shirai MA, Grossmann MVE, Mali S, Yamashita F, Garcia PS, Müller CMO (2013) Development ofbiodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydr Polym 92(1):19–22. https://doi.org/10.1016/j.carbpol.2012.09.038

  • [23] Li H, Huneault MA (2011) Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. J Appl Polym Sci 119(4):2439–2448. 2011, https://doi.org/10.1002/app.32956

  • [24] Ke TT, Sun XX (2001) Thermal and mechanical properties of poly(lactic acid) and starch blends with various lasticizers. Trans ASAE 44(4):945. https://doi.org/10.13031/2013.6228

  • [25] Maiza M, Benaniba MT, Quintard G, Massardier-Nageotte V (2015) Biobased additive plasticizing Polylactic acid (PLA). Polimeros 25(6):581–590. https://doi.org/10.1590/0104-1428.1986

  • [26] Johnson W (2002) Final report on the safety assessment of acetyl triethyl citrate, acetyl tributyl citrate,acetyl trihexyl citrate, and acetyl trioctyl citrate. Int J Toxicol 21(2):1–17. https://doi.org/10.1080/10915810290096504

  • [27] Zhang JF, X. Sun X (2004) Physical characterization of coupled poly(lactic acid)/ starch/maleic anhydrideblends plasticized by acetyl triethyl citrate. Macromol Biosci 4(11):1053–1060. https://doi.org/10.1002/mabi.200400076

  • [28] Arrieta MP, Fortunati E, Dominici F, López J, Kenny JM (2015) Bionanocomposite films based onplasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr Polym 121:265–275. https://doi.org/10.1016/j.carbpol.2014.12.056

  • [29] Arrieta MP, López J, López D, Kenny JM, Peponi L (2016) Biodegradable electrospun bionanocompositefibers based on plasticized PLA???PHB blends reinforced with cellulose nanocrystals. Ind Crops Prod 93:290– 301. 2016, https://doi.org/10.1016/j.indcrop.2015.12.058

  • [30] Cui L, Zhu CL, Zhu P, Tsou CH, Yang WJ, Yeh JT (2012) Preparation and physical properties of melt-blown nonwovens of biodegradable PLA/acetyl tributyl citrate/FePol copolyester blends. J Appl Polym Sci. https://doi.org/10.1002/app.36429

  • [31] Mainardes RM, Khalil NM, Gremio MPD (2010) Intranasal delivery of zidovudine by PLA and PLA- PEG blend nanoparticles. Int J Pharm 395(1–2):266–271. https://doi.org/10.1016/j.ijpharm.2010.05.020

  • [32] Zaaba NF, Jaafar M, Ismail H (2021) Tensile and morphological properties of nanocrystalline celluloseand nanofibrillated cellulose reinforced PLA bionanocomposites: A review. Polym Eng Sci 61(1):22–38. https://doi.org/10.1002/pen.25560

  • [33] Shen P, Moriya A, Rajabzadeh S, Maruyama T, Matsuyama H (2013) Improvement of the antifoulingproperties of poly (lactic acid) hollow fiber membranes with poly (lactic acid)-polyethylene glycol-poly (lactic acid) copolymers. Desalination 325:37–39. https://doi.org/10.1016/j.desal.2013.06.012

  • [34] Li FJ, Liang JZ, Zhang SD, Zhu B (2015) Tensile Properties of Polylactide/Poly(ethylene glycol) Blends. J Polym Environ 23(3):407–415. https://doi.org/10.1007/s10924-015-0718-7

  • [35] Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ (2013) Plasticized poly(lactic acid) with lowmolecular weight poly(ethylene glycol): Mechanical, thermal, and morphology properties. J Appl Polym Sci 130(6):4576–4580. https://doi.org/10.1002/app.39742

  • [36] Avérous L (2004) Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. J Macromol Sci Part C Polym Rev 44(3):231–274. https://doi.org/10.1081/MC-200029326

  • [37] Tsui A, Wright ZC, Frank CW (2013) Biodegradable polyesters from renewable resources. Annu Rev Chem Biomol Eng 4:143–70. https://doi.org/10.1146/annurev-chembioeng-061312-103323

  • [38] Garlotta D (2002) A Literature Review of Poly ( Lactic Acid ). J Polym Environ 9(2):63–84. https://doi.org/10.1023/A:1020200822435

                                                                                                                                                                                                        
  • Article Statistics