Eklemeli imalat yöntemlerinde metal tozu patlama riski ve önleme yöntemleri

Author :  

Year-Number: 2021-1
Yayımlanma Tarihi: 2021-07-30 16:19:59.0
Language : Türkçe
Konu : Metalurji ve Malzeme Mühendisliği
Number of pages: 41-60
Mendeley EndNote Alıntı Yap

Abstract

Metal tozu patlamaları, çeşitli yanıcı malzemelerin tozlarını üreten, kullanan ve/veya işleyen endüstrilerde güvenlik açısından kritik bir tehdit oluşturmaktadır. Toz patlamaları ne yazık ki genellikle ciddi yaralanmalara, can kayıplarına ve maddi hasara neden olur. Metal tozları, yüksek yanma ısıları, daha yüksek yanma sıcaklıkları, ışınımsal ısı transfer etkileri ve su ile yüksek derecedeki reaktif etkileşimleri nedeniyle artan bir patlama şiddeti ve hassasiyeti sergilemektedirler. Endüstriyel tesislerde gerçek ortam koşullarındaki patlama gelişimini tahmin edecek yöntemlerini geliştirmek karmaşık ve zordur. Bir metal toz türü için, toz bulutlarının tutuşma olasılığı ve yanma oranları, toz bilimi ve teknolojisinde belirtilen parametreler ile önemli ölçüde değişmektedir. En tehlikeli süreçler, tutuşmaya en duyarlı ve reaktif olan daha küçük parçacıkları içermektedir.

Avantajlarıyla dikkat çeken eklemeli imalat yöntemleri, çeşitli ilkeler ve hammaddeler kullanan tasarımlar ile daha geniş kullanım alanları bulmaktadır. Ancak bu teknoloji, benzersiz bir üretim potansiyelinin yanı sıra toz patlama riskini de beraberinde getirmektedir. Bu çalışmada, bir toz patlaması için gerekli olan koşullar,  ısı kaynakları açıklanmış ve toz özelliklerinin patlama üzerindeki etkileri tartışıldıktan sonra eklemeli imalat yöntemlerinde artan metal tozu kullanımı ile patlama risk ilişkisi analiz edilmiş ve alınabilecek koruyucu önlemler ile bu önlemlerin metal tozu içeren süreçlerdeki uygulama zorlukları üzerinde durulmuştur.

Keywords

Abstract

Metal dust explosions pose a critical safety threat in industries that produce, use and/or process dusts of various combustible materials. Unfortunately, dust explosions often cause serious injury, death and financial loss. Metal powders exhibit increased explosion severity and sensitivity because of their large heats of combustion, higher combustion temperatures, radiative heat transfer effects, and highly reactive interactions with water. Developing methods to predict explosion progression in real ambient conditions in industrial plants is complex and difficult. For a metal powder type, the ignition probability and combustion rates of dust clouds differ considerably with the parameters specified in powder science and technology. The most dangerous processes involve the smaller particles that are most sensitive and reactive to ignition.

Additive manufacturing methods, which attract attention with their advantages, are commonly used with designs using various principles and raw materials. However, this technology brings with it a unique production potential as well as the risk of dust explosion. In this study, the fundamental requirements for an explosion, heat sources are explained and after discussing the effects of dust properties on the explosion, the relationship between the increased use of metal powder in additive manufacturing methods and the explosion risk is analysed. In addition, the protective measures to be taken against the risk of metal dust explosion and the difficulties of applying these measures are emphasized.  

 

Keywords


  • [1] Ergür HS (2012) Makine Endüstrisinde Karşılaşılan Toz Patlaması Olayı ve Atex Yönergeleri. Journal of

  • [1] Ergür HS (2012) Makine Endüstrisinde Karşılaşılan Toz Patlaması Olayı ve Atex Yönergeleri. Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University 25(2):1-18.

  • [2] Kipdaş Mühendislik Çevre ve İş Sağlığı ve Güvenliği Laboratuvar Hizmetleri, Solunabilir toz ölçümsistemleri. https://www.kipdasmuhendislik.com/is-hijyeni-olcum-test-ve-analiz-laboratuvari/25-solunabilir-toz- olcumu-toz-tayini.html#. Erişim 1 Mart 2021

  • [3] Grossel SS (1989) Electrostatic hazards in powder handling. J Loss Prev Process Ind 2nd edn. John WileySons, Chichester, UK. pp 171. https://doi.org/10.1016/0950-4230(89)87014-7

  • [4] Eckhoff RK (2003) Dust Explosions—Origin, Propagation, Prevention, and Mitigation. Dust Explosionsin the Process Industries 3rd edn. Gulf Professional Publishing, Houston, Texas, US. pp 1–156. https://doi.org/10.1016/b978-075067602-1/50002-0

  • [5] Eckhoff RK, Li G (2021) Industrial Dust Explosions. A Brief Review. Appl Sci. https://doi.org/10.3390/app11041669

  • [6] Sezer P (2019) Alüminyum Toz Patlamalarının İncelenmesi ve Reaktif-Proaktif Önlem Çalışmaları.Dissertation, Gedik Üniversitesi Sağlık Bilimleri Enstitüsü İş Sağlığı Ve Güvenliği Anabilim Dalı, İstanbul, Türkiye

  • [7] NFPA 484 Standard for Combustible Metals, National Fire Protection Association, Quincy (2015). MA[8] Ibarreta AF, Myers TJ (2017) Mitigating fire and explosion hazards of powdered metals. Met Powder Rep 72(1):57-61. https://doi.org/10.1016/j.mprp.2016.01.073

  • [9] U.S. Chemical Safety and Hazard Investigation Board (2010). Case Study No. 2011-3-I-WV; AL Solutions, Inc., New Cumberland, WV

  • [10] Reding NS, Shiflett MB (2018) Metal Dust Explosion Hazards: A Technical Review. Ind Eng Chem Res 57(34):11473–11482. https://doi.org/10.1021/acs.iecr.8b02465

  • [11] Li G, Yang HX, Yuan CM, Eckhoff RK (2016) A catastrophic aluminium-alloy dust explosion in China. J Loss Prev Process Ind 39:121-130. https://doi.org/10.1016/j.jlp.2015.11.013

  • [12] Eckhoff RK (2009) Understanding dust explosions. The role of powder science and technology. J Loss Prev Process Ind 22(1):105–116. https://doi.org/10.1016/j.jlp.2008.07.006

  • [13] Vijayaraghavan G(2004) Impact assessment, modelling, and control of dust explosions in chemicalprocess industries. Dissertation, Department of Chemical Engineering, Coimbatore Institute of Technology, India[14] Abbasi T, Abbasi SA (2007) Dust explosions–Cases, causes, consequences, and control. J Hazard Mater 140(1-2):7–44. https://doi.org/10.1016/j.jhazmat.2006.11.007

  • [15] Dust explosion and ignition testing, January. https://www.explosiontesting.co.uk/explosion_ind_10.html. Erişim 1 Mart 2021

  • [16] Benson JM (2012) Safety considerations when handling metal powders. The Journal of The Southern African Institute of Mining and Metallurgy 7A:563-575.

  • [17] Eckhoff RK (2009) Understanding dust explosions. The role of powder science and technology. J Loss[18] Dobashi R (2009) Risk of dust explosions of combustible nanomaterials. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/170/1/012029

  • [19] Dufaud O, Traoré M, Perrin L, Chazelet S, Thomas D (2010) Experimental investigation and modellingof aluminum dusts explosions in the 20 L sphere. J Loss Prev Process Ind 23(2):226-236. https://doi.org/10.1016/j.jlp.2009.07.019

  • [20] Dastidar AG. Nalda‐Reyes B, Dahn CJ (2005) Evaluation of dust and hybrid mixture explosion potential in process plants. Process Saf Prog 24(4):294-298. https://doi.org/10.1002/prs.10097

  • [21] Bagaria P, Prasad S, Sun J, Bellair R, Mashuga C. Effect of particle morphology on dust minimum ignition energy. Powder Technol 355:1–6. https://doi.org/10.1016/j.powtec.2019.07.020

  • [22] Dust Explosion Fundamentals: Ignition Criteria and Pressure Development Robert Zalosh FirexploWellesley, MA 02481. http://dataspan.com/wp-content/uploads/2017/12/Dust-Explosion-White-Paper.pdf.[23] Nifuku M, Katoh H. (2003) A study on the static electrification of powders during pneumatictransportation and the ignition of dust cloud. Powder Technol. https://doi.org/10.1016/S0032-5910(03)00163-3[24] Combustible Dust Fire and Explosions (2005). Investigation Report for CTA Acoustics, Inc., Washington, DC

  • [25] Yuan Z, Khakzad N, Khan F, Amyotte P (2016) Domino effect analysis of dust explosions using Bayesiannetworks. Process Safety and Environmental Protection 100:108–116. https://doi.org/10.1016/j.psep.2016.01.005[26] Abdolhamidzadeh B, Abbasi T, Rashtchian D, Abbasi SA (2011) Domino effect in process-industryaccidents – An inventory of past events and identification of some patterns. J J Loss Prevent Process Ind 24(5):575– 593. https://doi.org/10.1016/j.jlp.2010.06.013

  • [27] Cao W, Qin Q, Cao W, Lan Y, Chen T, Xu S, Cao X (2017) Experimental and numerical studies on theexplosion severities of coal dust/air mixtures in a 20-L spherical vessel. Powder Technol 310:17–23. https://doi.org/10.1016/j.powtec.2017.01.019

  • [28] Nozar M, Pokorna V, Zetkova I (2019) Health Hazards of Additive Manufacturing, 30th DaaamInternational Symposium on Intelligent Manufacturing and Automation. https://doi.org/10.2507/30th.daaam.proceedings.090

  • [29] Roth GA, Geraci CL, Stefaniak A, Murashov V, Howard J (2019) Potential occupational hazards ofadditive manufacturing. J Occup Environ Hyg 16(5):321-328. https://doi.org/10.1080/15459624.2019.1591627

  • [30] Occupational Safety and Health Administration (2014). Hazard Alert: Combustible Dust Explosions, OSHA Fact Sheet, Washington, DC

  • [31] Yampolskiy M, Schutzle L, Vaidya U, Yasinsac A (2015) Security Challenges of Additive Manufacturingwith Metals and Alloys. Int J Crit Infrastruct Prot 9:169–183. https://doi.org/10.1007/978-3-319-26567-4_11 [32] Cashdollar KL, Zlochower IA, Loss Prevent. J Proc Ind 20:337–348

  • [33] Cheremisinoff NP (2014) Dust Explosion and Fire Prevention Handbook: A Guide to Good Industry Practices, Scrivener Publishing LLC/John Wiley & Sons, Salem, MA/Hoboken, NJ

  • [34] NFPA 68 Standard on Explosion Protection by Deflagration Venting (2007). National Fire Protection Association, Quincy, MA

  • [35] NFPA 484 Standard for Combustible Metals, National Fire Protection Association, Quincy, MA, 2015 Edition.

  • [36] Villamil C, Nylander J, Hallstedt SI, Schulte J, Watz M (2018) Additive Manufacturing From A Strategic Sustainability Perspective. International Design Conference. https://doi.org/10.21278/idc.2018.0353

  • [37] Mittal M (2014) Explosion characteristics of micron- and nano-size magnesium powders. J Loss Prev Process Ind 27:55–64. https://doi.org/10.1016/j.jlp.2013.11.001

  • [38] Reding NS, Farrell TM, Verma A, Shiflett MB (2021) Effect of particle morphology on metal dust deflagration sensitivity and severity. J Loss Prev Process Ind. https://doi.org/10.1016/j.jlp.2021.104396

  • [39] Tascón A (2018) Influence of particle size distribution skewness on dust explosibility. Powder Technology 338:438–445. https://doi.org/10.1016/j.powtec.2018.07.044

  • [40] Popov VV, Grilli ML, Koptyug A, Jaworska L, Katz-Demyanetz A, Klobˇcar D, Balos S, Postolnyi BO,Goel S (2021) Powder Bed Fusion Additive Manufacturing Using Critical Raw Materials: A Review. Materials. https://doi.org/10.3390/ma14040909

  • [41] Thistle J, Amyottea P, Ripleya R, Hossaina N (2014) Current Status of Nanopowder Dust Explosion Research: A Critical Review. 17th Annual International Symposium, Texas, USA Oct. 28-30.

  • [42] Davis SG, Hinze PC, Hansen OR, Wingerden K (2011) Does your facility have a dust problem: Methodsfor evaluating dust explosion hazard. J Loss Prev Process Ind 24(6):837–846. https://doi.org/10.1016/j.jlp.2011.06.010

  • [43] Ebadat V (2010) Dust explosion hazard assessment. J Loss Prev Process Ind 23(6):907–912.[44] Faq: How Long Do Conductive and Static-Dissipative Properties Last in ESD Flooring? (2021).https://kb.staticworx.com/faq/duration-conductive-static-dissipative-properties-esd-flooring/. Erişim 1 Mart 2021.[45] Scime L, Wolf SD, Beuth J, Mrdjenovich S, M. Kelley M (2018) Safety and Workflow Considerationsfor Modern Metal Additive Manufacturing Facilities. JOM 70(9):1830–1834. https://doi.org/10.1007/s11837-018- 2971-4

  • certification/tuv-rheinland-whitepaper-3d-printers-en.pdf. Erişim 1 Mart 2021

                                                                                                                                                                                                        
  • Article Statistics