Konuk-konak inklüzyon kompleksine dayalı çok kollu yıldız blok kopolimerinin sentezi

Author :  

Year-Number: 2022-1
Yayımlanma Tarihi: 2022-01-13 15:44:25.0
Language : İngilizce
Konu : Polimer Malzeme Mühendisliği
Number of pages: 1-16
Mendeley EndNote Alıntı Yap

Abstract

Supramoleküler çok kollu yıldız blok kopolimeri ((CD-PEG)p-(Ada-PS)n-poliDVB), beta-siklodekstrin (β-CD) uç fonksiyonelleştirilmiş polietilen glikolün (β-CD-PEG) ile adamantan çevresel olarak işlevselleştirilmiş çok kollu yıldız polimerinin ((Ada-PS)n-poliDVB) konuk-konak etkileşimi ile hazırlanmıştır. β-CD-PEG, mono azid fonksiyonel β-CD (β-CD-N3) ile alkin fonksiyonel PEG'nin bakır katalizli azid/alkin siklo katılma reaksiyonu (CuAAC) ile sentezlendi. Adamantan fonksiyonel polistiren (Ada-PS), stirenin (St) atom transfer radikal polimerizasyonu (ATRP) ile hazırlandı ve (Ada-PS)n-polyDVB çok kollu yıldız polimeri için çapraz bağlayıcı olan divinil benzen (DVB) ile reaksiyona sokuldu. β-CD-PEG ve (Ada-PS)n-poliDVB çok kollu yıldız oluşumunun yapıları 1H NMR ve GPC ile belirlendi. İnklüzyon kompleksinin oluşumunu doğrulamak için (CD-PEG)p-(Ada-PS)n-poliDVB'nin 2D ROESY NMR ve DLS analizi yapıldı. Artan moleküler ağırlıkların ve boyut dağılımlarının kanıtı, supramoleküler çok kollu yıldız blok kopolimer oluşumunu destekledi.

Keywords

Abstract

Supramolecular multiarm star block copolymer ((CD-PEG)p-(Ada-PS)n-polyDVB) was prepared by host-guest interaction of β-cyclodextrin ( β-CD) end functionalized polyethylene glycol (β-CD-PEG) and adamantane peripherally functionalized multiarm star polymer ((Ada-PS)n-polyDVB). The β-CD-PEG was synthesized by copper-catalyzed azide/alkyne cycloaddition reaction  (CuAAC) of alkyne functional PEG with mono azide functional β-CD (β-CD-N3). Adamantane functional polystyrene (Ada-PS) was  prepared by atom transfer radical polymerization (ATRP) of styrene (St) and was allowed to react with divinyl benzene (DVB) as a linking agent giving (Ada-PS)n-polyDVB multiarm star polymer. The structures of β-CD-PEG and  (Ada-PS)n-polyDVB multiarm star formation were determined by 1H NMR and GPC. 2D ROESY NMR and DLS analysis of (CD-PEG)p-(Ada-PS)n-polyDVB were carried out to validate the formation of the inclusion complex. The evidence of increased molecular weights and size distributions supported the supramolecular multiarm star block copolymer formation.

Keywords


  • [1] Gao H, Matyjaszewski K (2007) Low-polydispersity star polymers with core functionality by crosslinking

  • [1] Gao H, Matyjaszewski K (2007) Low-polydispersity star polymers with core functionality by crosslinkingmacromonomers using functional ATRP initiators. Macromolecules 40(3):399–401. https://doi.org/10.1021/ma062640d

  • [2] Gao H, Matyjaszewski K (2008) Synthesis of star polymers by a new, ‘‘Core-First’’ method: sequentialpolymerization of cross-linker and monomer. Macromolecules 41(4):1118–1125. https://doi.org/10.1021/ma702560f

  • [3] Hadjichristidis N (1999) Synthesis of miktoarm star (-star) polymers. J Polym Sci, Part A: Polym Chem 37(7):857–871. https://doi.org/10.1002/(SICI)1099-0518(19990401)37:7<857::AID-POLA1>3.0.CO;2-P

  • [4] Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101(12):3747–3792. https://doi.org/10.1021/cr9901337

  • (Ada-PS)n-polyDVBb 68340 74300 1.09 0.105 4.89 0.185 13(15)d(CD-PEG)p-(Ada-PS)n-polyDVB 95400 107300 1.13 0.120 5.59 0.153e -[5] Blencowe A, Tan JF, Goh TK, Qiao GG (2009) Core cross-linked star polymers via controlled radical polymerisation. Polymer 50(1):5–32. https://doi.org/10.1016/j.polymer.2008.09.049

  • [6] Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG (2016) Star polymers. Chem Rev 116(12):6743–6836. https://doi.org/10.1021/acs.chemrev.6b00008

  • [7] Kuckling D, Wycisk A (2013) Stimuli-responsive star polymers. J Polym Sci, Part A: Polym Chem 51(14):2980–2994. https://doi.org/10.1002/pola.26696

  • [8] Altintas O, Vogt AP, Barner-Kowollik C, Tunca U (2012) Constructing star polymers via modular ligation strategies. Polym Chem UK 3(1):34. https://doi.org/10.1039/c1py00249j

  • [9] Altintas, O, Schulze-Suenninghausen, D, Luy, B, Barner-Kowollik, C (2013). Facile Preparation ofSupramolecular H-Shaped (Ter)polymers via Multiple Hydrogen Bonding. Acs Macro Lett 2(3):211-216. https://doi.org/10.1021/mz400066r

  • [10] Fustin, C. A, Guillet, P, Schubert, U. S, Gohy, J. F (2007). Metallo-Supramolecular Block Copolymers. Advanced Materials 19(13):1665-1673. https://doi.org/10.1002/adma.200602170

  • [11] Chen, G, Jiang, M (2011). Cyclodextrin-based inclusion complexation bridging supramolecular chemistryand macromolecular self-assembly. Chemical Society reviews 40(5):2254-2266. https://doi.org/10.1039/C0CS00153H

  • [12] Zou, C, Zhao, P, Ge, J, Lei, Y, Luo, P (2012). -Cyclodextrin modified anionic andcationic acrylamide polymers for enhancing oil recovery. Carbohydr. Polym 87(1):607–613. https://doi.org/10.1016/j.carbpol.2011.08.031

  • [13] Xiao, H, Cezar, N (2005). Cationic-modified cyclodextrin nanosphere/anionicpolymer as flocculation/sorption systems. Colloid Interface Sci 283(2):406–413. https://doi.org/10.1016/j.jcis.2004.09.008

  • [14] Stadermann, J, Komber, H, Erber, M, Däbritz, F, Ritter, H, Voit, B (2011). Diblock Copolymer Formationvia Self-Assembly of Cyclodextrin and Adamantyl End-Functionalized Polymers. Macromolecules 44(9):3250- 3259. https://doi.org/10.1021/ma200048a

  • [15] Zeng, J, Shi, K, Zhang, Y, Sun, X, Zhang, B (2008). Construction and micellization of a noncovalent double hydrophilic block copolymer. Chem Commun 32:3753-3755. https://doi.org/10.1039/B806858E

  • [16] Liu, H, Zhang, Y, Hu, J, Li, C, Liu, S (2009). Multi-Responsive Supramolecular Double HydrophilicDiblock Copolymer Driven by Host-Guest Inclusion Complexation between β-Cyclodextrin and Adamantyl Moieties. Macromol Chem Phys 210: 2125-2137. https://doi.org/10.1002/macp.200900279

  • [17] Bertrand, A, Stenzel, M, Fleury, E, Bernard, J (2012). Host–guest driven supramolecular assembly ofreversible comb-shaped polymers in aqueous solution. Polym Chem 3(2):377-383. https://doi.org/10.1039/C1PY00478F

  • [18] Zhang, Z.-X, Liu, X, Xu, F. J, Loh, X. J, Kang, E.-T, Neoh, K.-G, Li, J (2008). Pseudo-Block CopolymerBased on Star-Shaped Poly(N-isopropylacrylamide) with a β-Cyclodextrin Core and Guest-Bearing PEG:Controlling Thermoresponsivity through Supramolecular Self-Assembly. Macromolecules 41(16):5967-5970. https://doi.org/10.1021/ma8009646

  • [19] Setijadi, E, Tao, L, Liu, J, Jia, Z, Boyer, C, Davis, T. P (2009). Biodegradable star polymers functionalizedwith beta-cyclodextrin inclusion complexes. Biomacromolecules 10(9):2699-2707. https://doi.org/10.1021/bm900646g

  • [20] Schmidt, B. V. K. J, Hetzer, M, Ritter, H, Barner-Kowollik, C (2013). UV Light and TemperatureResponsive Supramolecular ABA Triblock Copolymers via Reversible Cyclodextrin Complexation. Macromolecules 46(3):1054-1065. https://doi.org/10.1021/ma302386w

  • [21] Schmidt, B. V. K. J, Hetzer, M, Ritter, H, Barner-Kowollik, C (2012). Miktoarm star polymers viacyclodextrin-driven supramolecular self-assembly. Polym Chem-Uk 3(11):3064-3067. https://doi.org/10.1039/C2PY20214J

  • [22] Schmidt, B. V. K. J, Rudolph, T, Hetzer, M, Ritter, H, Schacher, F. H, Barner-Kowollik, C (2012).Supramolecular three-armed star polymers via cyclodextrin host–guest self-assembly. Polym Chem-Uk 3(11):3139-3145. https://doi.org/10.1039/C2PY20293J

  • [23] Schmidt, B. V. K. J, Barner-Kowollik, C (2014). Supramolecular X- and H-shaped star block copolymersvia cyclodextrin-driven supramolecular self-assembly. Polym Chem-Uk 5(7):2461-2472. https://doi.org/10.1039/C3PY01580G

  • [24] Huan, X, Wang, D, Dong, R, Tu, C, Zhu, B, Yan, D, Zhu, X (2012). Supramolecular ABC Miktoarm StarTerpolymer Based on Host–Guest Inclusion Complexation. Macromolecules 45(15):5941-5947. https://doi.org/10.1021/ma300693h

  • [25] Cakir, N, Hizal, G, Becer C. R (2015). Supramolecular glycopolymers with thermo-responsive self- assembly and lectin binding. Polym Chem-Uk 6 (37):6623-6631. https://doi.org/10.1039/C5PY00939A

  • [26] Durmaz, H, Dag, A, Altintas, O, Erdogan, T, Hizal, G, Tunca, U (2007). One-Pot Synthesis of ABC TypeTriblock Copolymers via in situ Click [3 + 2] and Diels−Alder [4 + 2] Reactions. Macromolecules 40 (2): 191- 198. https://doi.org/10.1021/ma061819l

  • [27] Cakir, N, Tunca, U, Hizal, G, Durmaz, H (2016). Heterofunctionalized multiarm star polymers viasequential thiol-para-fluoro and thiol-ene double “click” reactions. Macromol Chem Phys 217: 636-645. https://doi.org/10.1002/macp.201500300

  • [28] Cakir Yigit, N, Hizal, G, Tunca, U (2018). A powerful tool for preparing peripherally post-functionalized multiarm star block copolymer. Polym Bull 75:3523–3538. https://doi.org/10.1007/s00289-017-2218-5

                                                                                                                                                                                                        
  • Article Statistics